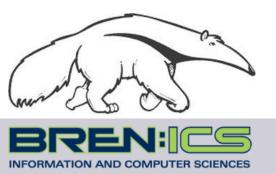
Machine Learning and Data Mining

Multi-layer Perceptrons & Neural Networks: Basics

Kalev Kask



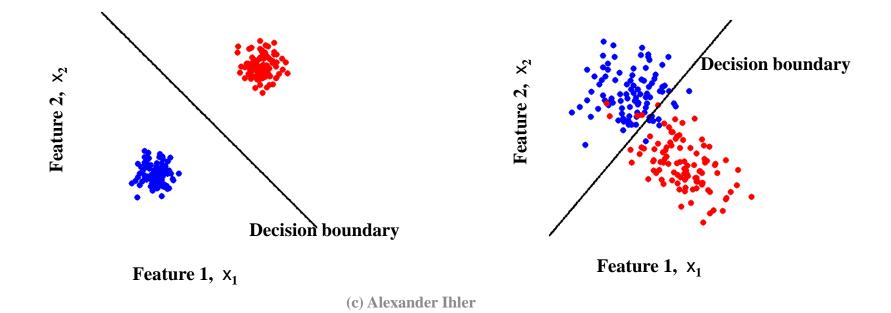
+

Linear classifiers (perceptrons)

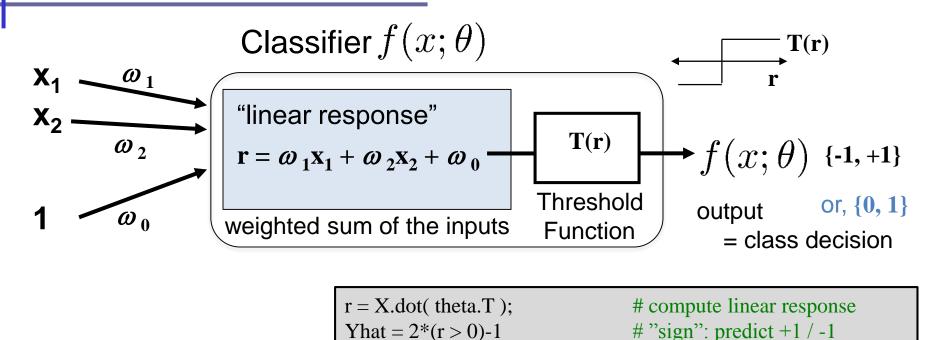
- Linear Classifiers
 - a linear classifier is a mapping which partitions feature space using a linear function (a straight line, or a hyperplane)
 - separates the two classes using a straight line in feature space
 - in 2 dimensions the decision boundary is a straight line

Linearly separable data

Linearly non-separable data



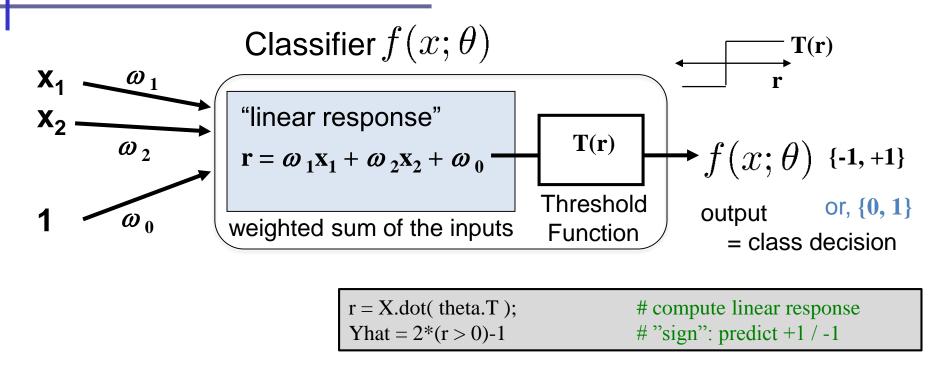
Perceptron Classifier (2 features)

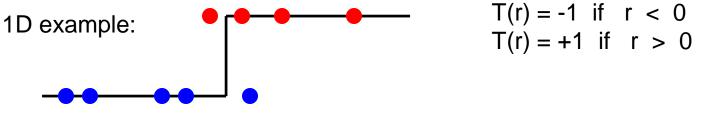


Decision Boundary at r(x) = 0

Solve:
$$X_2 = -w_1/w_2 X_1 - w_0/w_2$$
 (Line)

Perceptron Classifier (2 features)



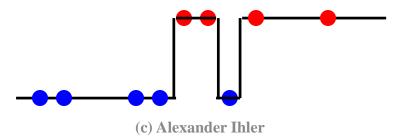


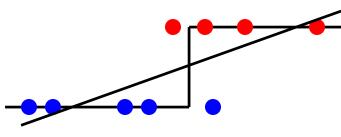
Decision boundary = "x such that T($w_1 x + w_0$) transitions"

(c) Alexander Ihler

Features and perceptrons

- Recall the role of features
 - We can create extra features that allow more complex decision boundaries
 - Linear classifiers
 - Features [1,x]
 - Decision rule: T(ax+b) = ax + b > < 0
 - Boundary ax+b =0 => point
 - Features [1,x,x²]
 - Decision rule T(ax²+bx+c)
 - Boundary ax²+bx+c = 0 = ?
 - What features can produce this decision rule?



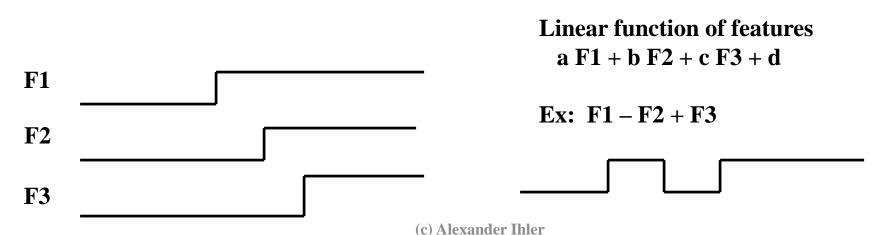


Features and perceptrons

- Recall the role of features
 - We can create extra features that allow more complex decision boundaries
 - For example, polynomial features

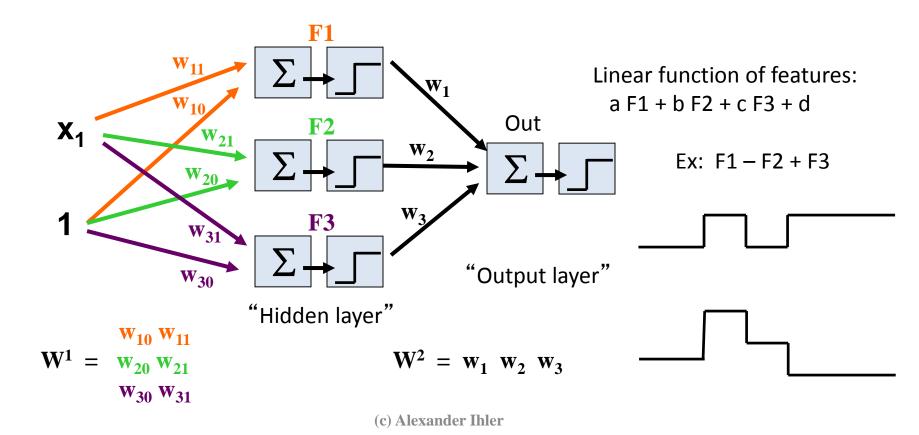
 $\Phi(x) = [1 \ x \ x^2 \ x^3 \dots]$

- What other kinds of features could we choose?
 - Step functions?



Multi-layer perceptron model

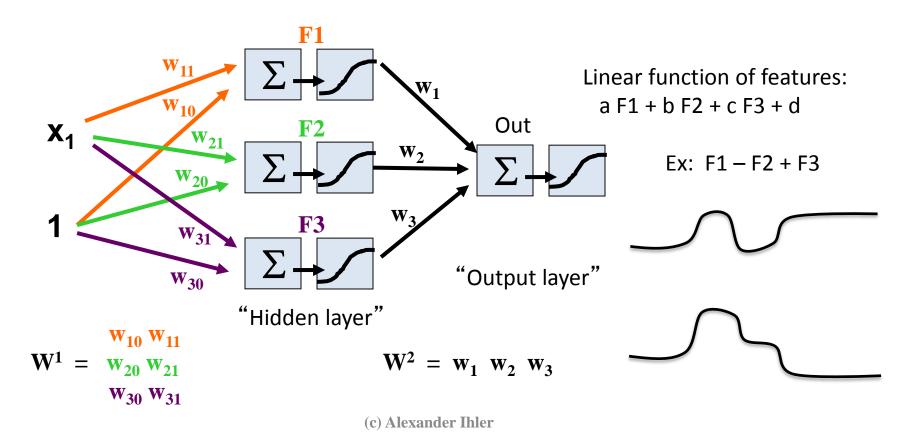
- Step functions are just perceptrons!
 - "Features" are outputs of a perceptron
 - Combination of features output of another



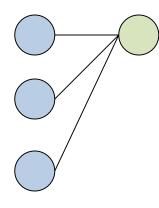
Multi-layer perceptron model

- Step functions are just perceptrons!
 - "Features" are outputs of a perceptron
 - Combination of features output of another

Regression version: Remove activation function from output



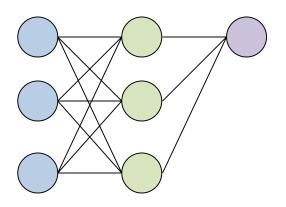
- Simple building blocks
 - Each element is just a perceptron f'n
- Can build upwards



Input Features ____

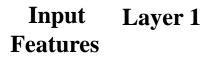
Perceptron: Step function / Linear partition

- Simple building blocks
 - Each element is just a perceptron f'n
- Can build upwards

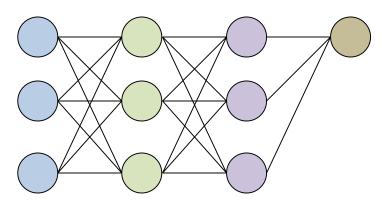


2-layer:

"Features" are now partitions All linear combinations of those partitions



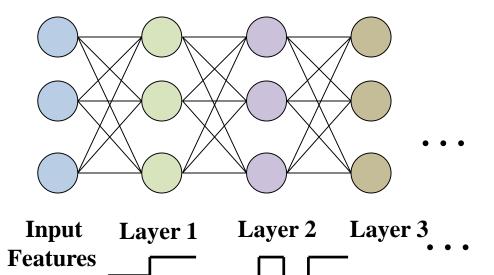
- Simple building blocks
 - Each element is just a perceptron f'n
- Can build upwards



Input Layer 1 Layer 2 Features 3-layer:

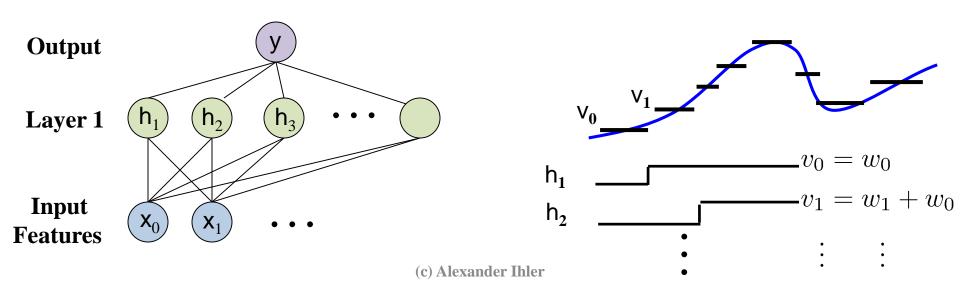
"Features" are now complex functions Output any linear combination of those

- Simple building blocks
 - Each element is just a perceptron f'n
- Can build upwards



Current research: "Deep" architectures (many layers)

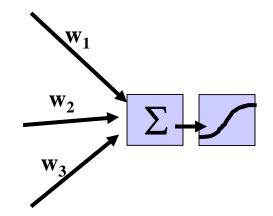
- Simple building blocks
 - Each element is just a perceptron function
- Can build upwards
- Flexible function approximation
 - Approximate arbitrary functions with enough hidden nodes

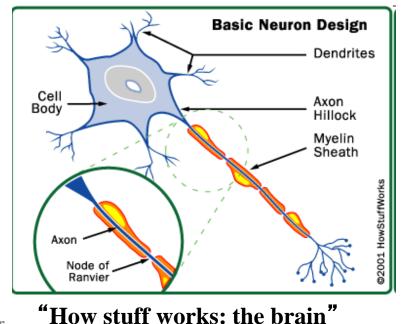


Neural networks

- Another term for MLPs
- Biological motivation

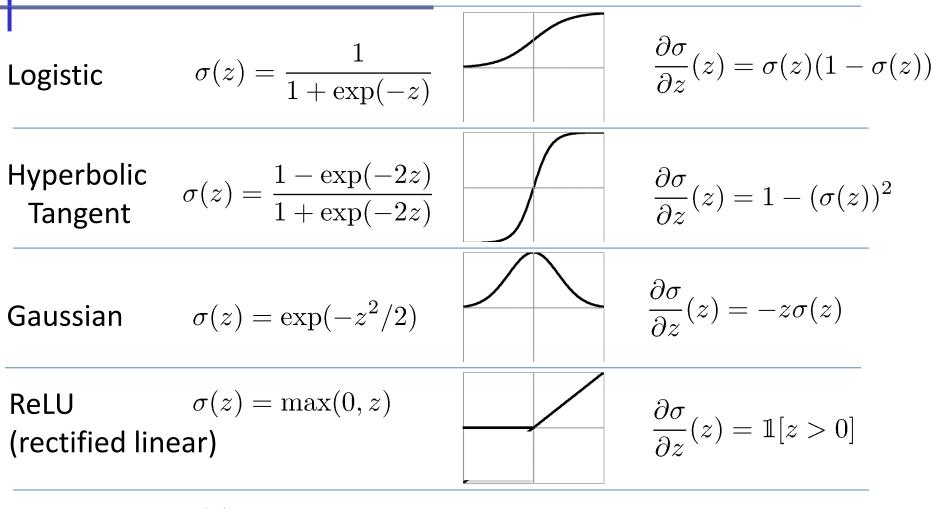
- Neurons
 - "Simple" cells
 - Dendrites sense charge
 - Cell weighs inputs
 - "Fires" axon





(c) Alexander Ihler

Activation functions

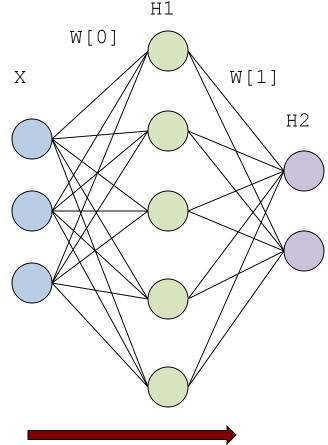


Linear $\sigma(z) = z$

and many others...

Feed-forward networks

- Information flows left-to-right
 - Input observed features
 - Compute hidden nodes (parallel)
 - Compute next layer...



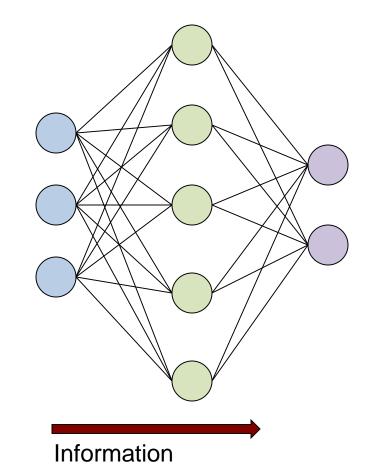
Information

Feed-forward networks

- A note on multiple outputs:
- •Regression:
 - Predict multi-dimensional y
 - "Shared" representation
 - = fewer parameters

Classification

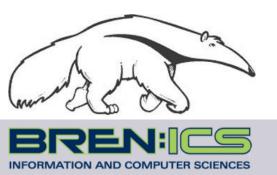
- Predict binary vector
- Multi-class classification
 - $y = 2 = [0 \ 0 \ 1 \ 0 \ \dots]$
- Multiple, joint binary predictions (image tagging, etc.)
- Often trained as regression (MSE), with saturating activation



Machine Learning and Data Mining

Multi-layer Perceptrons & Neural Networks: Backpropagation

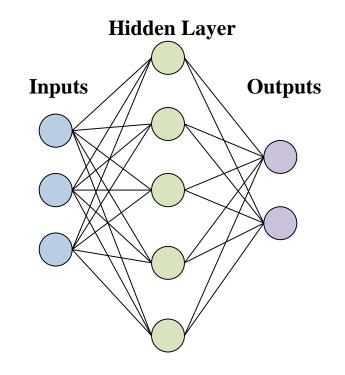
Kalev Kask



+

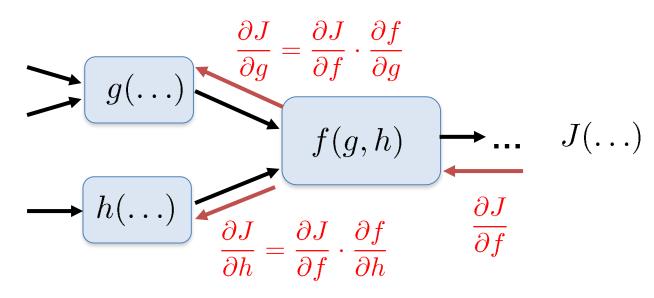
Training MLPs

- Observe features "x" with target "y"
- Push "x" through NN = output is "ŷ"
- Error: $(y \hat{y})^2$ (Can use different loss functions if desired...)
- How should we update the weights to improve?
- Single layer
 - Logistic sigmoid function
 - Smooth, differentiable
- Optimize using:
 - Batch gradient descent
 - Stochastic gradient descent



Gradient calculations

- Think of NNs as "schematics" made of smaller functions
 - Building blocks: summations & nonlinearities
 - For derivatives, just apply the chain rule, etc!

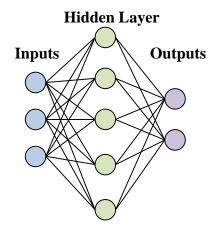


Ex: $f(g,h) = g^2 h$

$$\frac{\partial J}{\partial g} = \frac{\partial J}{\partial f} \cdot 2 g(\cdot) h(\cdot) \qquad \quad \frac{\partial J}{\partial h} = \frac{\partial J}{\partial f} \cdot g^2(\cdot)$$

save & reuse info (g,h) from forward computation!

(c) Alexander Ihler



Backpropagation

- Just gradient descent...
- Apply the chain rule to the MLP

$$\frac{\partial J}{\partial w_{kj}^2} = -2\sum_{k'} (y_{k'} - \hat{y}_{k'}) \ (\partial \hat{y}_{k'})$$
$$= -2(y_k - \hat{y}_k) \ \sigma'(s_k) \ h_j$$

Forward pass

Loss function

$$J_i(W) = \sum_k (y_k^{(i)} - \hat{y}_k^{(i)})^2$$

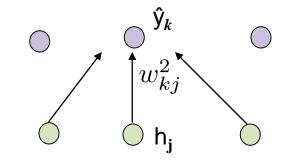
Output layer

$$\hat{y}_k = \sigma(s_k) = \sigma(\sum_j w_{kj}^2 h_j)$$

Hidden layer

$$h_j = \sigma(t_j) = \sigma(\sum_i w_{ji}^1 x_i)$$

(Identical to logistic mse regression with inputs "h_i")



Backpropagation

- Just gradient descent...
- Apply the chain rule to the MLP

$$\frac{\partial J}{\partial w_{kj}^2} = -2\sum_{k'} (y_{k'} - \hat{y}_{k'}) (\partial \hat{y}_{k'})$$
$$= -2(y_k - \hat{y}_k) \sigma'(s_k) h_j$$
$$\beta_k^2$$

Forward pass

Loss function

$$J_i(W) = \sum_k (y_k^{(i)} - \hat{y}_k^{(i)})^2$$

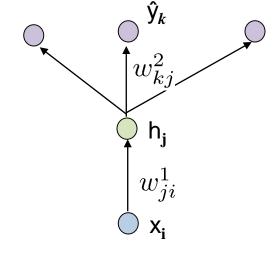
Output layer

$$\hat{y}_k = \sigma(s_k) = \sigma(\sum_j w_{kj}^2 h_j)$$

Hidden layer

$$h_j = \sigma(t_j) = \sigma(\sum_i w_{ji}^1 x_i)$$

(Identical to logistic mse regression with inputs " h_j ")



Backpropagation

- Just gradient descent...
- Apply the chain rule to the MLP

• Apply the chain rule to the MLP

$$\frac{\partial J}{\partial w_{kj}^2} = -2(y_k - \hat{y}_k) \sigma'(s_k) h_j$$

$$\frac{\partial J}{\partial w_{ji}^1} = \sum_k -2(y_k - \hat{y}_k) \sigma'(s_k) w_{kj}^2 \sigma'(t_j) x_i$$

$$\frac{\partial J}{\partial w_{ji}^1} = \sum_k -2(y_k - \hat{y}_k) \sigma'(s_k) w_{kj}^2 \sigma'(t_j) x_i$$

$$\frac{\langle X : (1 \times N1) \rangle}{\langle W : (N2 \times N1+1) \rangle}$$

$$H = \operatorname{Sig}(X1.\operatorname{dot}(W[0]))$$

$$\langle W : (N2 \times N1+1) \rangle$$

$$H : (1 \times N2) \rangle$$

$$H = \operatorname{Sig}(H1.\operatorname{dot}(W[1]))$$

$$\langle W : (1 \times N3) \rangle$$

$$H = B2.\operatorname{dot}(W[1]) * \operatorname{dsig}(T) # (1 \times N3) \cdot (N3 * N2) * (1 \times N2)$$

$$H = B1.T.\operatorname{dot}(X) = (N2 \times N1+1)$$

Forward pass

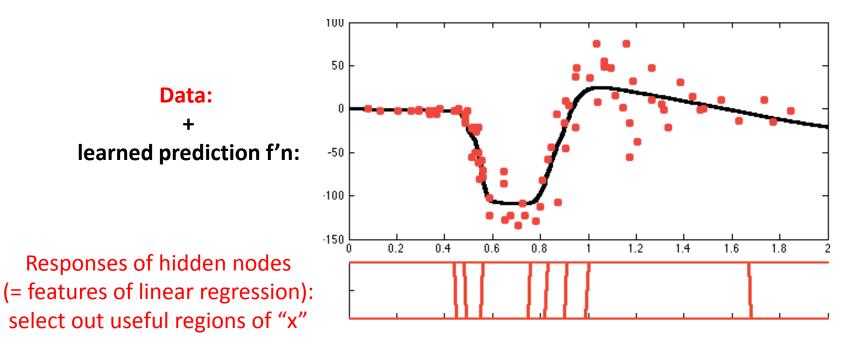
 $J_i(W) = \sum_k (y_k^{(i)} - \hat{y}_k^{(i)})^2$

Loss function

Output layer

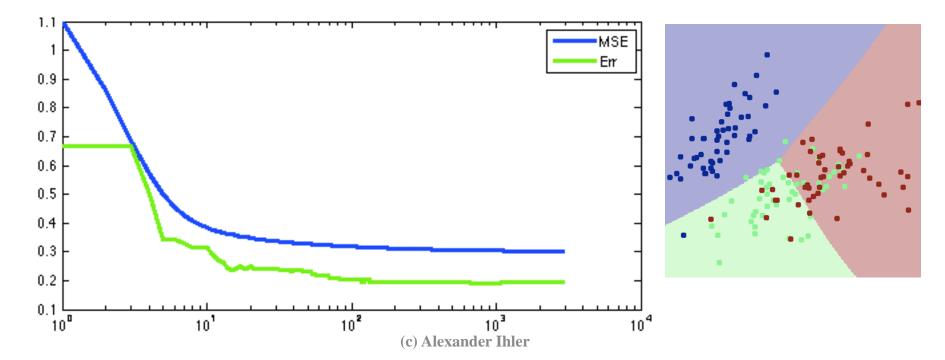
Example: Regression, MCycle data

- Train NN model, 2 layer
 - 1 input features => 1 input units
 - 10 hidden units
 - 1 target => 1 output units
 - Logistic sigmoid activation for hidden layer, linear for output layer



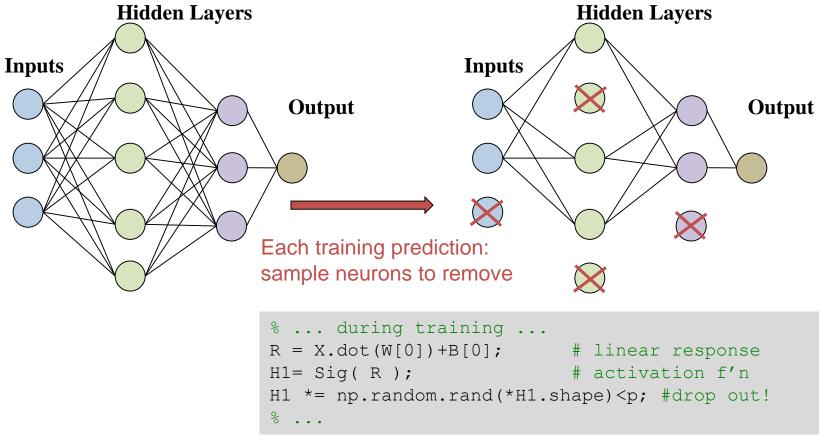
Example: Classification, Iris data

- Train NN model, 2 layer
 - 2 input features => 2 input units
 - 10 hidden units
 - 3 classes => 3 output units (y = [0 0 1], etc.)
 - Logistic sigmoid activation functions
 - Optimize MSE of predictions using stochastic gradient



Dropout

- Another recent technique
 - Randomly "block" some neurons at each step
 - Trains model to have redundancy (predictions must be robust to blocking)

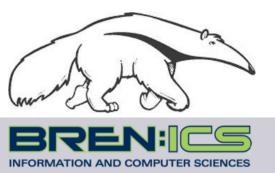


(c) Alexander Ihler

Machine Learning and Data Mining

Neural Networks in Practice

Kalev Kask



+

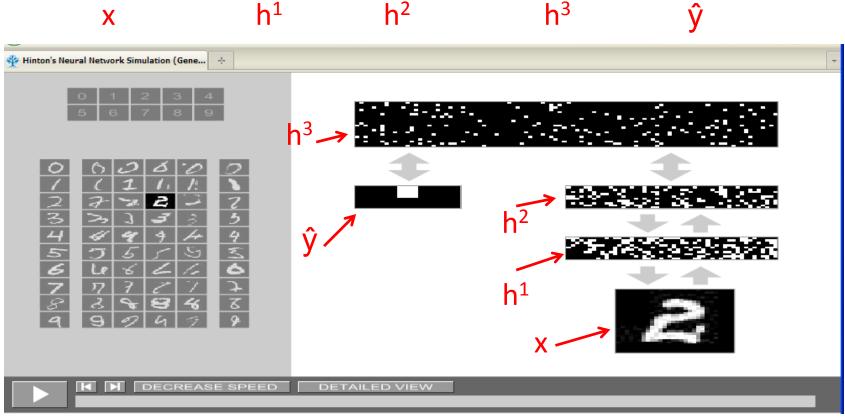
CNNs vs RNNs

• CNN

- Fixed length input/output
- Feed forward
- E.g. image recognition
- RNN
 - Variable length input
 - Feed back
 - Dynamic temporal behavior
 - E.g. speech/text processing
- http://playground.tensorflow.org

MLPs in practice

- Example: Deep belief nets
 - Handwriting recognition
 - Online demo
 - 784 pixels ⇔ 500 mid ⇔ 500 high ⇔ 2000 top ⇔ 10 labels



 $\mathbf{\hat{\mathbf{v}}}$

MLPs in practice

- Example: Deep belief nets
 - Handwriting recognition

h1

Online demo

>7

- 784 pixels ⇔ 500 mid ⇔ 500 high ⇔ 2000 top ⇔ 10 labels

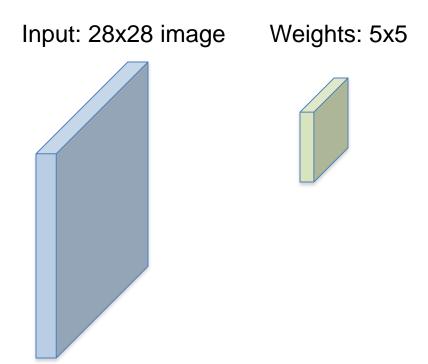
h2

L3

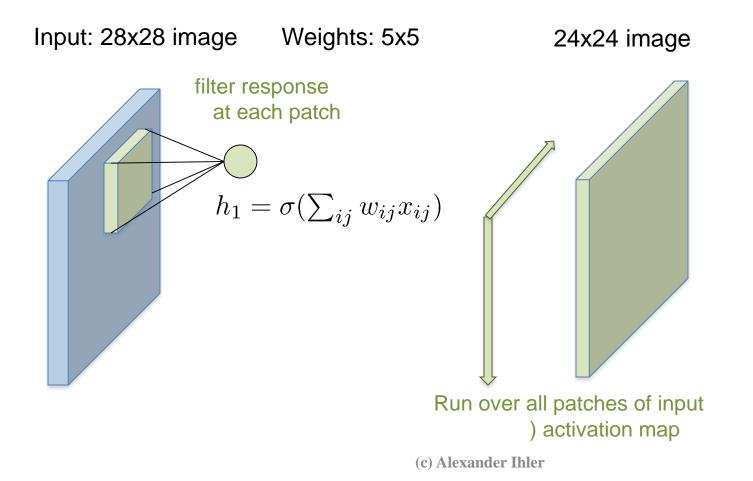
X	11-	11-	II ²	У	
🛫 Hinton's Neural Network Simulation (Gene	÷				-
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 9 0 1 2 3 4 9 0 1 2 3 4 9 0 1 1 2 3 0 1 1 2 7 8 9 0 1 1 2 3 0 1 1 2 7 8 9 0 1 2 3 9 0 1 1 2 7 8 9 0 1 2 3 9 0 1 1 2 7 8 9 0 1 1 2 7 8 9 7 8 9 7 8 9 7 8 7 8 9 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8	h ³ - ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?		h^2 h^1 x		
	SPEED	DETAILED VIEW			

(c) Alexander Ihler

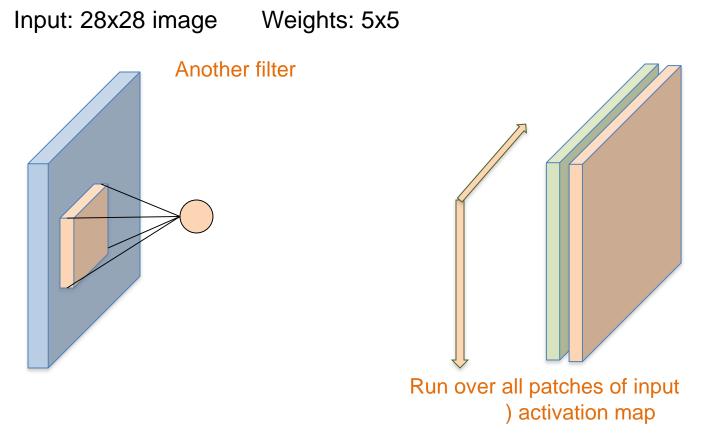
- Organize & share the NN's weights (vs "dense")
- Group weights into "filters"



- Organize & share the NN's weights (vs "dense")
- Group weights into "filters" & convolve across input image

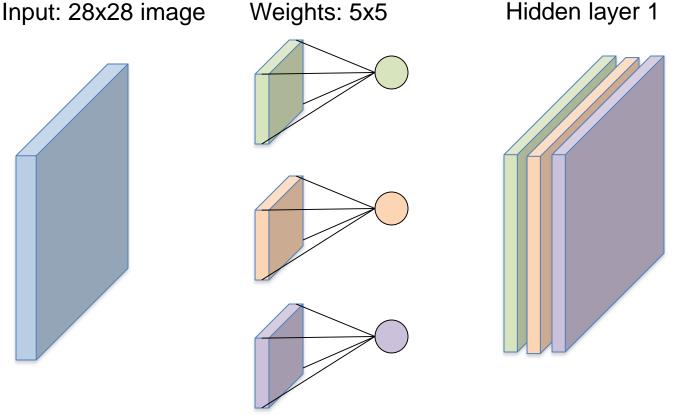


- Organize & share the NN's weights (vs "dense")
- Group weights into "filters" & convolve across input image



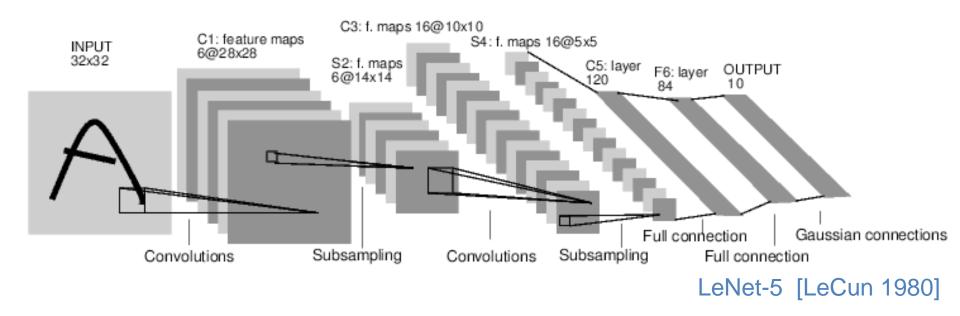
(c) Alexander Ihler

- Organize & share the NN's weights (vs "dense")
- Group weights into "filters" & convolve across input image
- Many hidden nodes, but few parameters!



(c) Alexander Ihler

- Again, can view components as building blocks
- Design overall, deep structure from parts
 - Convolutional layers
 - "Max-pooling" (sub-sampling) layers
 - Densely connected layers



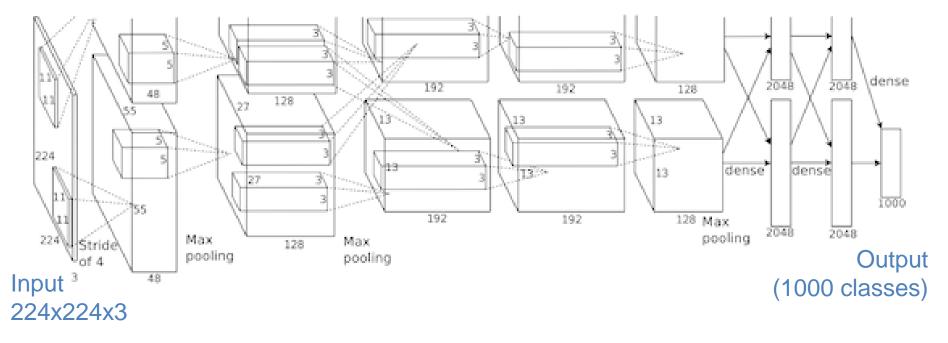
[Krizhevsky et al. 2012]

Ex: AlexNet

- Deep NN model for ImageNet classification
 - 650k units; 60m parameters
 - 1m data; 1 week training (GPUs)

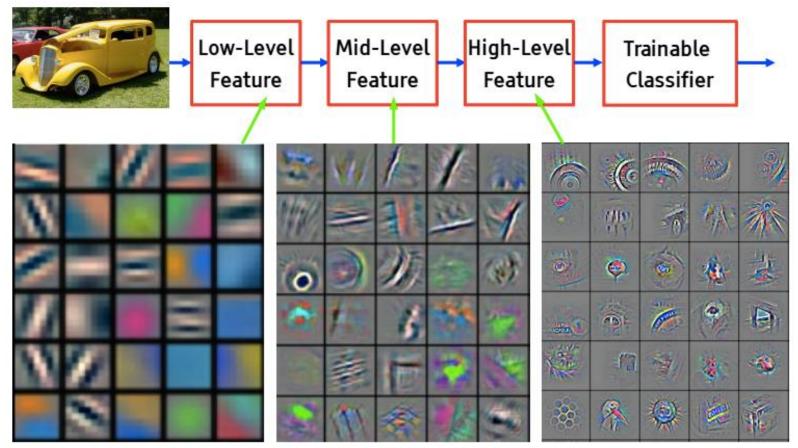
Convolutional Layers (5)

Dense Layers (3)



Hidden layers as "features"

• Visualizing a convolutional network's filters [Zeiler & Fergus 2013]



Slide image from Yann LeCun: https://drive.google.com/open?id=0BxKBnD5y2M8NcIFWSXNxa0JIZTg

(c) Alexander Ihler

Neural networks & DBNs

- Want to try them out?
- Matlab "Deep Learning Toolbox" https://github.com/rasmusbergpalm/DeepLearnToolbox

rasmusbergpalm / DeepLearnToolbox

Matlab/Octave toolbox for deep learning. Includes Deep Belief Nets, Stacked Autoencoders, Convolutional Neural Nets, Convolutional Autoencoders and vanilla Neural Nets. Each method has examples to get you started.

PyLearn2

https://github.com/lisa-lab/pylearn2

TensorFlow

Summary

- Neural networks, multi-layer perceptrons
- Cascade of simple perceptrons
 - Each just a linear classifier
 - Hidden units used to create new features
- Together, general function approximators
 - Enough hidden units (features) = any function
 - Can create nonlinear classifiers
 - Also used for function approximation, regression, ...
- Training via backprop
 - Gradient descent; logistic; apply chain rule. Building block view.
- Advanced: deep nets, conv nets, dropout, …