
Machine Learning and Data Mining

Multi-layer Perceptrons & Neural Networks:

Basics

Kalev Kask

+

• Linear Classifiers

– a linear classifier is a mapping which partitions feature space using a linear

function (a straight line, or a hyperplane)

– separates the two classes using a straight line in feature space

– in 2 dimensions the decision boundary is a straight line

Linearly separable data Linearly non-separable data

(c) Alexander Ihler

Feature 1, x1

F
ea

tu
re

 2
,
 x

2

Decision boundary

Feature 1, x1

F
ea

tu
re

 2
,
 x

2 Decision boundary

Linear classifiers (perceptrons)

Perceptron Classifier (2 features)

(c) Alexander Ihler

w 1

w 2

w 0

{-1, +1}

weighted sum of the inputs
Threshold

Function
output

= class decision

T(r)

r

Classifier
x1

x2

1

T(r)
r = w 1x1 + w 2x2 + w 0

“linear response”

r = X.dot(theta.T); # compute linear response

Yhat = 2*(r > 0)-1 # ”sign”: predict +1 / -1

or, {0, 1}

Decision Boundary at r(x) = 0

Solve: X2 = -w1/w2 X1 – w0/w2 (Line)

Perceptron Classifier (2 features)

(c) Alexander Ihler

w 1

w 2

w 0

{-1, +1}

weighted sum of the inputs
Threshold

Function
output

= class decision

T(r)

r

Classifier
x1

x2

1

T(r)
“linear response”

r = X.dot(theta.T); # compute linear response

Yhat = 2*(r > 0)-1 # ”sign”: predict +1 / -1

or, {0, 1}

Decision boundary = “x such that T(w1 x + w0) transitions”

1D example:
T(r) = -1 if r < 0

T(r) = +1 if r > 0

r = w 1x1 + w 2x2 + w 0

• Recall the role of features

– We can create extra features that allow more complex decision

boundaries

– Linear classifiers

– Features [1,x]

• Decision rule: T(ax+b) = ax + b >/< 0

• Boundary ax+b =0 => point

– Features [1,x,x2]

• Decision rule T(ax2+bx+c)

• Boundary ax2+bx+c = 0 = ?

– What features can produce this decision rule?

(c) Alexander Ihler

Features and perceptrons

• Recall the role of features

– We can create extra features that allow more complex decision

boundaries

– For example, polynomial features

Φ(x) = [1 x x2 x3 …]

• What other kinds of features could we choose?

– Step functions?

(c) Alexander Ihler

F1

F2

F3

Linear function of features

a F1 + b F2 + c F3 + d

Ex: F1 – F2 + F3

Features and perceptrons

• Step functions are just perceptrons!

– “Features” are outputs of a perceptron

– Combination of features output of another

(c) Alexander Ihler

F1

Linear function of features:
a F1 + b F2 + c F3 + d

Ex: F1 – F2 + F3

w11

w10

x1

1

F2

F3

w21

w20

w31

w30

Out

w3

w1

w2

“Hidden layer”

“Output layer”

w10 w11

W1 = w20 w21

w30 w31

W2 = w1 w2 w3

Multi-layer perceptron model

• Step functions are just perceptrons!

– “Features” are outputs of a perceptron

– Combination of features output of another

(c) Alexander Ihler

F1

Linear function of features:
a F1 + b F2 + c F3 + d

Ex: F1 – F2 + F3

w11

w10

x1

1

F2

F3

w21

w20

w31

w30

Out

w3

w1

w2

“Hidden layer”

“Output layer”

w10 w11

W1 = w20 w21

w30 w31

Regression version:
Remove activation
function from output

W2 = w1 w2 w3

Multi-layer perceptron model

• Simple building blocks
– Each element is just a perceptron f’n

• Can build upwards

(c) Alexander Ihler

Input

Features

Perceptron:

Step function /

Linear partition

Features of MLPs

• Simple building blocks
– Each element is just a perceptron f’n

• Can build upwards

(c) Alexander Ihler

Input

Features

2-layer:

“Features” are now partitions

All linear combinations of those partitions

Layer 1

Features of MLPs

• Simple building blocks
– Each element is just a perceptron f’n

• Can build upwards

(c) Alexander Ihler

Input

Features

3-layer:

“Features” are now complex functions

Output any linear combination of those

Layer 1 Layer 2

Features of MLPs

• Simple building blocks
– Each element is just a perceptron f’n

• Can build upwards

(c) Alexander Ihler

Input

Features

Current research:

“Deep” architectures

(many layers)

Layer 1 Layer 2

…

…Layer 3

Features of MLPs

• Simple building blocks
– Each element is just a perceptron function

• Can build upwards

• Flexible function approximation
– Approximate arbitrary functions with enough hidden nodes

(c) Alexander Ihler

…

Input

Features

Layer 1

Output

…

h1

h2

h1 h2 h3

y

x0 x1
…

v0

v1

Features of MLPs

• Another term for MLPs

• Biological motivation

• Neurons

– “Simple” cells

– Dendrites sense charge

– Cell weighs inputs

– “Fires” axon

(c) Alexander Ihler

w3

w1

w2

“How stuff works: the brain”

Neural networks

(c) Alexander Ihler

Logistic

Hyperbolic
Tangent

Gaussian

ReLU
(rectified linear)

and many others…

Activation functions

Linear

Feed-forward networks
• Information flows left-to-right

– Input observed features

– Compute hidden nodes (parallel)

– Compute next layer…

• Alternative: recurrent NNs…

(c) Alexander Ihler

R = X.dot(W[0])+B[0]; # linear response

H1= Sig(R); # activation f’n

S = H1.dot(W[1])+B[1]; # linear response

H2 = Sig(S); # activation f’n

% ...

X

W[0]

H1

W[1]

H2

Information

Feed-forward networks
A note on multiple outputs:

•Regression:
– Predict multi-dimensional y

– “Shared” representation

= fewer parameters

•Classification
– Predict binary vector

– Multi-class classification

y = 2 = [0 0 1 0 …]

– Multiple, joint binary predictions

(image tagging, etc.)

– Often trained as regression (MSE),

with saturating activation

(c) Alexander Ihler

Information

Machine Learning and Data Mining

Multi-layer Perceptrons & Neural Networks:

Backpropagation

Kalev Kask

+

• Observe features “x” with target “y”

• Push “x” through NN = output is “ŷ”

• Error: (y- ŷ)2

• How should we update the weights to improve?

• Single layer

– Logistic sigmoid function

– Smooth, differentiable

• Optimize using:

– Batch gradient descent

– Stochastic gradient descent

(c) Alexander Ihler

Inputs

Hidden Layer

Outputs

(Can use different loss functions if desired…)

Training MLPs

Gradient calculations
• Think of NNs as “schematics” made of smaller functions

– Building blocks: summations & nonlinearities

– For derivatives, just apply the chain rule, etc!

(c) Alexander Ihler

Inputs

Hidden Layer

Outputs

…

Ex: f(g,h) = g2 h

save & reuse info (g,h) from forward computation!

• Just gradient descent…

• Apply the chain rule to the MLP

(c) Alexander Ihler

Forward pass

Output layer

Hidden layer

Loss function

(Identical to logistic mse regression with inputs “hj”)

ŷk

hj

Backpropagation

• Just gradient descent…

• Apply the chain rule to the MLP

(c) Alexander Ihler

Forward pass

Output layer

Hidden layer

Loss function

(Identical to logistic mse regression with inputs “hj”)

ŷk

hj

xi

Backpropagation

• Just gradient descent…

• Apply the chain rule to the MLP

(c) Alexander Ihler

Forward pass

Output layer

Hidden layer

Loss function

B2 = (Y-Yhat) * dSig(S) #(1xN3)

G2 = B2.T.dot(H) #(N3x1)*(1xN2)=(N3xN2)

B1 = B2.dot(W[1])*dSig(T)#(1xN3).(N3*N2)*(1xN2)

G1 = B1.T.dot(X) #(N2 x N1+1)

% X : (1xN1)

H = Sig(X1.dot(W[0]))

% W1 : (N2 x N1+1)

% H : (1xN2)

Yh = Sig(H1.dot(W[1]))

% W2 : (N3 x N2+1)

% Yh : (1xN3)

Backpropagation

Example: Regression, MCycle data
• Train NN model, 2 layer

– 1 input features => 1 input units

– 10 hidden units

– 1 target => 1 output units

– Logistic sigmoid activation for hidden layer, linear for output layer

(c) Alexander Ihler

Data:
+

learned prediction f’n:

Responses of hidden nodes
(= features of linear regression):
select out useful regions of “x”

Example: Classification, Iris data
• Train NN model, 2 layer

– 2 input features => 2 input units

– 10 hidden units

– 3 classes => 3 output units (y = [0 0 1], etc.)

– Logistic sigmoid activation functions

– Optimize MSE of predictions using stochastic gradient

(c) Alexander Ihler

Dropout
• Another recent technique

– Randomly “block” some neurons at each step

– Trains model to have redundancy (predictions must be robust to blocking)

(c) Alexander Ihler

Inputs

Hidden Layers

Output

Inputs

Hidden Layers

Output

Each training prediction:

sample neurons to remove

[Srivastava et al 2014]

% ... during training ...

R = X.dot(W[0])+B[0]; # linear response

H1= Sig(R); # activation f’n

H1 *= np.random.rand(*H1.shape)<p; #drop out!

% ...

Machine Learning and Data Mining

Neural Networks in Practice

Kalev Kask

+

CNNs vs RNNs
• CNN

– Fixed length input/output

– Feed forward

– E.g. image recognition

• RNN

– Variable length input

– Feed back

– Dynamic temporal behavior

– E.g. speech/text processing

• http://playground.tensorflow.org

(c) Alexander Ihler

MLPs in practice
• Example: Deep belief nets

– Handwriting recognition

– Online demo

– 784 pixels 500 mid 500 high 2000 top 10 labels

(c) Alexander Ihler

h1

h2

h3

ŷ

x

h1 h2 h3 ŷx

[Hinton et al. 2007]

MLPs in practice
• Example: Deep belief nets

– Handwriting recognition

– Online demo

– 784 pixels 500 mid 500 high 2000 top 10 labels

(c) Alexander Ihler

h1

h2

h3

ŷ

x

h1 h2 h3 ŷx

[Hinton et al. 2007]

Convolutional networks
• Organize & share the NN’s weights (vs “dense”)

• Group weights into “filters”

(c) Alexander Ihler

Input: 28x28 image Weights: 5x5

Convolutional networks
• Organize & share the NN’s weights (vs “dense”)

• Group weights into “filters” & convolve across input image

(c) Alexander Ihler

Input: 28x28 image Weights: 5x5

filter response

at each patch

Run over all patches of input

) activation map

24x24 image

Convolutional networks
• Organize & share the NN’s weights (vs “dense”)

• Group weights into “filters” & convolve across input image

(c) Alexander Ihler

Input: 28x28 image Weights: 5x5

Another filter

Run over all patches of input

) activation map

Convolutional networks
• Organize & share the NN’s weights (vs “dense”)

• Group weights into “filters” & convolve across input image

• Many hidden nodes, but few parameters!

(c) Alexander Ihler

Input: 28x28 image Weights: 5x5 Hidden layer 1

Convolutional networks
• Again, can view components as building blocks

• Design overall, deep structure from parts
– Convolutional layers

– “Max-pooling” (sub-sampling) layers

– Densely connected layers

(c) Alexander Ihler

LeNet-5 [LeCun 1980]

Ex: AlexNet
• Deep NN model for ImageNet classification

– 650k units; 60m parameters

– 1m data; 1 week training (GPUs)

(c) Alexander Ihler

Convolutional Layers (5) Dense Layers (3)

Output

(1000 classes)Input

224x224x3

[Krizhevsky et al. 2012]

Hidden layers as “features”
• Visualizing a convolutional network’s filters

(c) Alexander Ihler

Slide image from Yann LeCun:

https://drive.google.com/open?id=0BxKBnD5y2M8NclFWSXNxa0JlZTg

[Zeiler & Fergus 2013]

Neural networks & DBNs
• Want to try them out?

• Matlab “Deep Learning Toolbox”
https://github.com/rasmusbergpalm/DeepLearnToolbox

• PyLearn2

https://github.com/lisa-lab/pylearn2

• TensorFlow

(c) Alexander Ihler

Summary
• Neural networks, multi-layer perceptrons

• Cascade of simple perceptrons
– Each just a linear classifier

– Hidden units used to create new features

• Together, general function approximators
– Enough hidden units (features) = any function

– Can create nonlinear classifiers

– Also used for function approximation, regression, …

• Training via backprop
– Gradient descent; logistic; apply chain rule. Building block view.

• Advanced: deep nets, conv nets, dropout, …

(c) Alexander Ihler

