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• Linear Classifiers

– a linear classifier is a mapping which partitions feature space using a linear 

function (a straight line, or a hyperplane)

– separates the two classes using a straight line in feature space

– in 2 dimensions the decision boundary is a straight line

Linearly separable data Linearly non-separable data
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Linear classifiers (perceptrons)



Perceptron Classifier (2 features)
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r = w 1x1 + w 2x2 + w 0

“linear response”

r = X.dot( theta.T ); # compute linear response

Yhat = 2*(r > 0)-1 # ”sign”: predict +1 / -1

or, {0, 1}

Decision Boundary at  r(x) = 0 

Solve:  X2 = -w1/w2 X1 – w0/w2 (Line)



Perceptron Classifier (2 features)
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“linear response”

r = X.dot( theta.T ); # compute linear response

Yhat = 2*(r > 0)-1 # ”sign”: predict +1 / -1

or, {0, 1}

Decision boundary = “x such that T( w1 x + w0 ) transitions”

1D example:
T(r) = -1  if   r  <  0

T(r) = +1  if   r  >  0 

r = w 1x1 + w 2x2 + w 0



• Recall the role of features

– We can create extra features that allow more complex decision 

boundaries

– Linear classifiers

– Features [1,x]

• Decision rule:  T(ax+b)  =  ax + b >/< 0

• Boundary ax+b =0  => point

– Features [1,x,x2]

• Decision rule T(ax2+bx+c)   

• Boundary ax2+bx+c = 0  = ?

– What features can produce this decision rule?

(c) Alexander Ihler

Features and perceptrons



• Recall the role of features

– We can create extra features that allow more complex decision 

boundaries

– For example, polynomial features

Φ(x) = [1  x  x2 x3 …]

• What other kinds of features could we choose?

– Step functions?
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Features and perceptrons



• Step functions are just perceptrons!

– “Features” are outputs of a perceptron

– Combination of features output of another
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• Step functions are just perceptrons!

– “Features” are outputs of a perceptron

– Combination of features output of another
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W2 =  w1   w2   w3

Multi-layer perceptron model



• Simple building blocks
– Each element is just a perceptron f’n

• Can build upwards
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• Simple building blocks
– Each element is just a perceptron f’n

• Can build upwards
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• Simple building blocks
– Each element is just a perceptron f’n

• Can build upwards

(c) Alexander Ihler
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“Features” are now complex functions

Output any linear combination of those  

Layer 1 Layer 2

Features of MLPs



• Simple building blocks
– Each element is just a perceptron f’n

• Can build upwards
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• Simple building blocks
– Each element is just a perceptron function

• Can build upwards

• Flexible function approximation
– Approximate arbitrary functions with enough hidden nodes
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• Another term for MLPs

• Biological motivation

• Neurons

– “Simple” cells

– Dendrites sense charge

– Cell weighs inputs

– “Fires” axon
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Neural networks
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Feed-forward networks
• Information flows left-to-right

– Input observed features

– Compute hidden nodes (parallel)

– Compute next layer…

• Alternative: recurrent NNs…
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R = X.dot(W[0])+B[0]; # linear response

H1= Sig( R );         # activation f’n

S = H1.dot(W[1])+B[1]; # linear response

H2 = Sig( S );         # activation f’n

% ...

X

W[0]

H1

W[1]

H2

Information



Feed-forward networks
A note on multiple outputs:

•Regression:
– Predict multi-dimensional y

– “Shared” representation

= fewer parameters

•Classification
– Predict binary vector

– Multi-class classification

y = 2  =  [0 0 1 0 … ]

– Multiple, joint binary predictions

(image tagging, etc.)

– Often trained as regression (MSE),

with saturating activation
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Information
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• Observe features “x” with target “y”

• Push “x” through NN = output is “ŷ”

• Error:  (y- ŷ)2

• How should we update the weights to improve?

• Single layer

– Logistic sigmoid function

– Smooth, differentiable

• Optimize using:

– Batch gradient descent

– Stochastic gradient descent

(c) Alexander Ihler
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Gradient calculations
• Think of NNs as “schematics” made of smaller functions

– Building blocks: summations & nonlinearities

– For derivatives, just apply the chain rule, etc!
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• Just gradient descent…

• Apply the chain rule to the MLP
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• Just gradient descent…

• Apply the chain rule to the MLP

(c) Alexander Ihler

Forward pass

Output layer

Hidden layer

Loss function

(Identical to logistic mse regression with inputs “hj”)

ŷk

hj

xi

Backpropagation



• Just gradient descent…

• Apply the chain rule to the MLP
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Forward pass

Output layer

Hidden layer

Loss function

B2 = (Y-Yhat) * dSig(S)  #(1xN3)

G2 = B2.T.dot( H )       #(N3x1)*(1xN2)=(N3xN2)

B1 = B2.dot(W[1])*dSig(T)#(1xN3).(N3*N2)*(1xN2)

G1 = B1.T.dot( X )       #(N2 x N1+1)

% X  : (1xN1) 

H  = Sig(X1.dot(W[0])) 

% W1 : (N2 x N1+1)

% H  : (1xN2)

Yh = Sig(H1.dot(W[1])) 

% W2 : (N3 x N2+1)

% Yh : (1xN3)

Backpropagation



Example: Regression, MCycle data
• Train NN model, 2 layer

– 1 input features => 1 input units

– 10 hidden units

– 1 target => 1 output units

– Logistic sigmoid activation for hidden layer, linear for output layer
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+

learned prediction f’n:

Responses of hidden nodes
(= features of linear regression):
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Example: Classification, Iris data
• Train NN model, 2 layer

– 2 input features => 2 input units

– 10 hidden units

– 3 classes => 3 output units   (y = [0 0 1], etc.)

– Logistic sigmoid activation functions

– Optimize MSE of predictions using stochastic gradient
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Dropout
• Another recent technique

– Randomly “block” some neurons at each step

– Trains model to have redundancy (predictions must be robust to blocking)
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Each training prediction:
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[Srivastava et al 2014]

% ... during training ...

R = X.dot(W[0])+B[0];      # linear response

H1= Sig( R );              # activation f’n

H1 *= np.random.rand(*H1.shape)<p; #drop out!

% ...
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CNNs vs RNNs
• CNN

– Fixed length input/output

– Feed forward

– E.g. image recognition 

• RNN

– Variable length input

– Feed back

– Dynamic temporal behavior

– E.g. speech/text processing

• http://playground.tensorflow.org
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MLPs in practice
• Example: Deep belief nets

– Handwriting recognition

– Online demo

– 784 pixels  500 mid  500 high  2000 top  10 labels 
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MLPs in practice
• Example: Deep belief nets

– Handwriting recognition

– Online demo

– 784 pixels  500 mid  500 high  2000 top  10 labels 
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Convolutional networks
• Organize & share the NN’s weights   (vs “dense”)

• Group weights into “filters”
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Input: 28x28 image Weights: 5x5



Convolutional networks
• Organize & share the NN’s weights   (vs “dense”)

• Group weights into “filters” & convolve across input image
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Convolutional networks
• Organize & share the NN’s weights   (vs “dense”)

• Group weights into “filters” & convolve across input image
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Input: 28x28 image Weights: 5x5
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) activation map



Convolutional networks
• Organize & share  the NN’s weights   (vs “dense”)

• Group weights into “filters” & convolve across input image

• Many hidden nodes, but few parameters!

(c) Alexander Ihler

Input: 28x28 image Weights: 5x5 Hidden layer 1



Convolutional networks
• Again, can view components as building blocks

• Design overall, deep structure from parts
– Convolutional layers

– “Max-pooling” (sub-sampling) layers

– Densely connected layers
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LeNet-5  [LeCun 1980]



Ex: AlexNet
• Deep NN model for ImageNet classification

– 650k units; 60m parameters

– 1m data; 1 week training (GPUs)
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Convolutional Layers (5) Dense Layers (3)

Output

(1000 classes)Input
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[Krizhevsky et al. 2012]



Hidden layers as “features”
• Visualizing a convolutional network’s filters
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Slide image from Yann LeCun:

https://drive.google.com/open?id=0BxKBnD5y2M8NclFWSXNxa0JlZTg

[Zeiler & Fergus 2013]



Neural networks & DBNs
• Want to try them out?

• Matlab “Deep Learning Toolbox”
https://github.com/rasmusbergpalm/DeepLearnToolbox

• PyLearn2

https://github.com/lisa-lab/pylearn2

• TensorFlow
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Summary
• Neural networks, multi-layer perceptrons

• Cascade of simple perceptrons
– Each just a linear classifier

– Hidden units used to create new features

• Together, general function approximators
– Enough hidden units (features) = any function

– Can create nonlinear classifiers

– Also used for function approximation, regression, …

• Training via backprop
– Gradient descent; logistic; apply chain rule.  Building block view.

• Advanced: deep nets, conv nets, dropout, …
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